
Cloud Search Service

Best Practices

Issue 01

Date 2023-03-29

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Cluster Migration...1
1.1 Migration Solution Overview.. 1
1.2 Migration from Elasticsearch.. 3
1.2.1 Migrating Cluster Data Using Logstash... 3
1.2.2 Migrating Cluster Data Through Backup and Restoration.. 5
1.3 Migration from Kafka/MQ... 7
1.4 Migration from a Database... 8

2 Cluster Access...10
2.1 Overview.. 10
2.2 Accessing a Cluster Using cURL Commands... 11
2.3 Accessing a Cluster Using Java...13
2.3.1 Accessing a Cluster Through the Rest High Level Client... 13
2.3.2 Accessing a Cluster Through the Rest Low Level Client.. 21
2.3.3 Accessing the Cluster Through the Transport Client... 36
2.4 Accessing a Cluster Using Python... 37
2.5 Using ES-Hadoop to Read and Write Data in Elasticsearch Through Hive.. 39

3 Cluster Performance Tuning... 46
3.1 Optimizing Write Performance.. 46
3.2 Optimizing Query Performance... 49

4 Practices...52
4.1 Using CSS to Accelerate Database Query and Analysis.. 52
4.2 Using CSS to Build a Unified Log Management Platform.. 56
4.3 Configuring Query Scoring in an Elasticsearch Cluster... 60

Cloud Search Service
Best Practices Contents

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. ii

1 Cluster Migration

1.1 Migration Solution Overview
You can migrate data to a Huawei Cloud Elasticsearch cluster from another
Huawei Cloud Elasticsearch cluster, a user-built Elasticsearch cluster, or a third-
party Elasticsearch cluster. This section describes the solutions for data migration
from different clusters.

Scenarios
The migration solution varies depending on the data source.

● Migration from an Elasticsearch cluster
You can use Logstash, CDM, OBS backup and restoration, ESM, or cross-
cluster replication plug-ins to migrate data in an Elasticsearch cluster.
– Logstash: an official data cleaning tool provided by Elasticsearch. It is a

part of the Elk ecosystem and provides powerful functions. It can migrate
data between different data sources and Elasticsearch, and clean and
process data. For details, see Migrating Cluster Data Using Logstash.

– CDM: a cloud migration tool provided by Huawei Cloud to implement
cluster migration between different cloud services. For details, see .

– Backup and restoration: Elasticsearch provides backup and restoration
capabilities. You can back up the data of a cluster to OBS, and restore the
data to another cluster. For details, see Migrating Cluster Data Through
Backup and Restoration.

● Migration from Kafka/MQ
● Migration from a Database

Solutions
CSS supports migration by backup and restoration, by using the Reindex API or
Logstash+ESM, or by data source synchronization. For details, see Table 1-1.

Data source synchronization has fewer constraints and higher performance than
the other three solutions. Data source synchronization allows cutover anytime
after the synchronization completed, which is more convenient and flexible.

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 1

Table 1-1 Migration solutions

Solution Description Constraint Performance

Backup
and
restorati
on

Prepare shared storage
that supports the S3
protocol, for example, an
OBS bucket. Create a
snapshot to back up the
data of the source
Elasticsearch cluster,
synchronize the snapshot
to the target cluster, and
restore data to the target
cluster.

● Target
Elasticsearch
version ≥ Source
Elasticsearch
version

● Number of
candidate master
nodes of the
target
Elasticsearch
cluster > Half of
the number of
candidate master
nodes of the
source
Elasticsearch
cluster

● Incremental data
synchronization is
not supported. You
need to stop
update before
backing up or
restoring data.

The data
migration rate is
configurable.
Ideally, the data
migration rate is
the same as the
file copy rate.

Reindex
API

Configure mutual trust
between the source and
target Elasticsearch
clusters, and then
migrate data using the
Reindex API.

● _source must be
enabled for
indexes.

● Real-time
synchronization of
incremental data is
not supported. You
need to stop the
update and then
call the API.

Batch read and
write are
supported, but
concurrent
slicing
synchronization
is not supported.

Logstash
+ESM

Apply for an ECS, deploy
and configure Logstash
on it, and then start data
migration.

● _source must be
enabled for
indexes.

● Real-time
synchronization of
incremental data is
not supported. You
need to stop the
update and then
start Logstash.

Batch read and
write are
supported, and
concurrent
slicing
synchronization
is supported.

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 2

Solution Description Constraint Performance

Data
source
synchron
ization

Inventory data is
migrated using Logstash,
and incremental data is
automatically
synchronized through
traffic replication or data
links.

None The inventory
migration rate is
the same as that
of Logstash. An
existing tool is
reused for
incremental
migration.

1.2 Migration from Elasticsearch

1.2.1 Migrating Cluster Data Using Logstash
Logstash is an official data migration tool provided by Elasticsearch.

Step 1 Apply for an ECS, preferably with at least 8 vCPUs and 16 GB memory.

Step 2 Install Logstash on the ECS.

1. Install JDK, because Logstash depends on Java. Run the following command
to install JDK using yum:
yum install java
yum install python

2. Download Logstash. Choose a Logstash version close to the Elasticsearch
version. They do not have to use exactly the same version.
Logstash 7.10.2 OSS is recommended. You can download it from https://
www.elastic.co/downloads/past-releases/logstash-oss-7-10-2

3. Run the following command to install Logstash using yum:
yum install logstash-oss-7.10.0-x86_64.rpm

Replace logstash-oss-7.10.0-x86_64.rpm with the actual Logstash installation
package name.

Step 3 Modify the JVM configuration of Logstash to improve the cluster data migration
efficiency.

Run the following command to modify the JVM configuration. The default heap
memory of Logstash is 1 GB. You are advised to change the heap memory to half
of the cluster node memory.

vim /etc/logstash/jvm.options
-Xms4g
-Xmx4g

Step 4 Modify the conf configuration file of Logstash and configure cluster migration
settings.

1. Go to the /etc/logstash/conf.d/ directory where the Logstash configuration
file is stored.
cd /etc/logstash/conf.d/

2. Create the logstash-es-es-all.conf file.
vim logstash-es-es-all.conf

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 3

https://www.elastic.co/downloads/past-releases/logstash-oss-7-10-2
https://www.elastic.co/downloads/past-releases/logstash-oss-7-10-2

3. Add the following content to the logstash-es-es-all.conf file and save the
file.
Modify the hosts, user, password, index fields as needed.
input{
 elasticsearch{
 #IP address of the source cluster
 hosts => ["http://172.16.xxx.xxx:9200", "http://172.16.xxx.xxx:9200"]
 # #For a security cluster, configure the username and password for cluster login. For a non-
security cluster, you can use the number sign (#) to comment out the user and password fields.
 # user => "xxxx"
 # password => "xxxx"
 # #List of indexes to be migrated. Multiple indexes are separated by commas (,). Set this
parameter based on the actual host information. -.* indicates that indexes starting with a period (.)
are excluded.
 index => "abmau_edi*,business_test,goods_deploy*, -.*"
 # Retain the default values of the following three items, including the number of threads, the
size of migrated data, and Logstash JVM configurations.
 docinfo=>true
 # Retain the default value. To increase the migration speed, you can increase the values of the
following two parameters, but to a proper extent.
 slices => 3
 size => 3000
 }
}

filter {
 # Delete some fields added by Logstash.
 mutate {
 remove_field => ["@timestamp", "@version"]
 }
}

output{
 elasticsearch{
 # Destination cluster address.
 hosts => ["http://10.100.xx.xx:9200", "http://10.100.xx.xx:9200"]
 # Username and password for logging in to the target cluster. If you do not need to configure
them, use the number sign (#) to comment them out.
 user => "admin"
 password => "*****"
 # Index name of the target cluster. The following configurations must be the same as that of
the source cluster.
 index => "%{[@metadata][_index]}"
 # #Index type of the target cluster. The following configurations must be the same as that of
the source cluster.
 document_type => "%{[@metadata][_type]}"
 # _id of the target data. If the original _id does not need to be retained, you can delete it. After
the deletion, the cluster performance can be better.
 document_id => "%{[@metadata][_id]}"
 ilm_enabled => false
 manage_template => false
 }

 # Debugging information. You are advised to delete this information before migration.
 # stdout { codec => rubydebug { metadata => true }}
}

Step 5 Start Logstash to migrate cluster data.

1. Run the following command to start Logstash:
/usr/share/logstash/bin/logstash --path.settings /etc/logstash

2. View the Logstash log file to check the task progress. The Logstash log
directory is /var/log/logstash/.

3. Wait until the data migration is complete.

----End

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 4

1.2.2 Migrating Cluster Data Through Backup and Restoration
● To migrate data between Huawei Cloud Elasticsearch clusters, follow the

instructions in .
● To migrate data from a user-built or third-party Elasticsearch cluster to a

Huawei Cloud Elasticsearch cluster, perform the steps in this section.

Prerequisites
● Before using backup and restoration, ensure that:

– Target Elasticsearch version ≥ Source Elasticsearch version
– Number of candidate master nodes of the target Elasticsearch cluster >

Half of the number of candidate master nodes of the source Elasticsearch
cluster

● Backup and restoration do not support incremental data synchronization. You
need to stop data update before backing up data.

● The target Elasticsearch cluster has been created in CSS.

Migration Process
The following figure shows the cluster migration process when the source is a
user-built or third-party Elasticsearch cluster, and the target is an Elasticsearch
cluster of CSS.

Figure 1-1 Migration through backup and restoration

Procedure

Step 1 Create a shared repository that supports the S3 protocol, for example, OSS of the
Alibaba Cloud.

Step 2 Create a snapshot backup repository in the user-built or third-party Elasticsearch
cluster to store Elasticsearch snapshot data.

For example, create a backup repository named my_backup in Elasticsearch and
associate it with the repository OSS.

PUT _snapshot/my_backup
 {
 # Repository type.
 "type": "oss",

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 5

 "settings": {
 # # Private network domain name of the repository in step 1.
 "endpoint": "http://oss-xxx.xxx.com",
 # User ID and password of the repository.
 "access_key_id": "xxx",
 "secret_access_key": "xxx",
 # Bucket name of the repository created in step 1.
 "bucket": "patent-esbak",
 # # Whether to enable snapshot file compression.
 "compress": false,
 # If the size of the uploaded snapshot data exceeds the value of this parameter, the data will be
uploaded as blocks to the repository.
 "chunk_size": "1g",
 # Start position of the repository. The default value is the root directory.
 "base_path": "snapshot/"
 }
}

Step 3 Create a snapshot for the user-built or third-party Elasticsearch cluster.
● Create a snapshot for all indexes.

For example, create a snapshot named snapshot_1.
PUT _snapshot/my_backup/snapshot_1?wait_for_completion=true

● Create a snapshot for specified indexes.
For example, create a snapshot named snapshot_test that contains indexes
patent_analyse and patent.
PUT _snapshot/my_backup/snapshot_test
{
"indices": "patent_analyse,patent"
}

Step 4 View the snapshot creation progress of the cluster.
● Run the following command to view information about all snapshots:

GET _snapshot/my_backup/_all

● Run the following command to view information about snapshot_1:
GET _snapshot/my_backup/snapshot_1

Step 5 Migrate snapshot data from the repository to OBS.

The Object Storage Migration Service (OMS) supports data migration from
multiple cloud vendors to OBS. For details, see .

Step 6 Create a repository in the Elasticsearch cluster of CSS and associate it with OBS.
This repository will be used for restoring the snapshot data of the user-built or
third-party Elasticsearch cluster.

For example, create a repository named my_backup_all in the cluster and
associate it with the destination OBS.

PUT _snapshot/my_backup_all/
{
 "type" : "obs",
 "settings" : {
 # Private network domain name of OBS
 "endpoint" : "obs.xxx.xxx.com",
 "region" : "xxx",
 # Username and password for accessing OBS
 "access_key": "xxx",
 "secret_key": "xxx",
 # OBS bucket name, which must be the same as the destination OBS bucket name in the previous step
 "bucket" : "esbak",
 "compress" : "false",
 "chunk_size" : "1g",
 #Note that there is no slash (/) after snapshot.

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 6

 "base_path" : "snapshot",
 "max_restore_bytes_per_sec": "100mb",
 "max_snapshot_bytes_per_sec": "100mb"
 }
}

Step 7 Restore the snapshot data to the Elasticsearch cluster of CSS.

1. Check information about all snapshots.
GET _snapshot

2. Restore a snapshot

– Restore all the indexes from a snapshot. For example, to restore all the
indexes from snapshot_1, run the following command:
POST _snapshot/my_backup_all/snapshot_1/_restore?wait_for_completion=true

– Restores some indexes from a snapshot. For example, in the snapshot
named snapshot_1, restore only the indexes that do not start with a
period (.).
POST _snapshot/my_backup/snapshot_1/_restore
{"indices":"*,-.monitoring*,-.security*,-.kibana*","ignore_unavailable":"true"}

– Restore a specified index from a snapshot and renames the index. For
example, in snapshot_1, restore index_1 to restored_index_1 and
index_2 to restored_index_2.
POST /_snapshot/my_backup/snapshot_1/_restore
{
 # Restore only indexes index_1 and index_2 and ignore other indexes in the snapshot.
 "indices": "index_1,index_2"
 # Search for the index that is being restored. The index name must match the provided
template.
 "rename_pattern": "index_(.+)",
 # Rename the found index.
 "rename_replacement": "restored_index_$1"
}

Step 8 View the snapshot restoration result.

● Run the following command to view the restoration results of all snapshots:
GET /_recovery/

● Run the following command to check the snapshot restoration result of a
specified index:
 GET {index_name}/_recovery

----End

1.3 Migration from Kafka/MQ

Process

In industries dealing with a large amount of data, such as IoT, news, public
opinion analysis, and social networking, message middleware such as Kafka and
MQ is used to balance traffic in peak and off-peak hours. The tools such as Flink
and Logstash are then used to consume data, preprocess data, and import data to
the search engine, providing the search service for external systems.

The following figure shows the process of migrating data from a Kafka or MQ
cluster.

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 7

Figure 1-2 Migration from a Kafka or MQ cluster

This migration solution is convenient and flexible.

● Convenient: Once the data of the two ES clusters becomes consistent, a
cutover can be performed at any time.

● Flexible: Data can be added, deleted, modified, and queried on both sides.

Procedure

Step 1 Subscribe to incremental data. Create a consumer group in Kafka or MQ, and
subscribe to incremental data.

Step 2 Synchronize inventory data. Use a tool such as Logstash to migrate data from the
source Elasticsearch cluster to the CSS cluster. If Logstash is used for data
migration, see Migrating Cluster Data Using Logstash.

Step 3 Synchronize incremental data. After the inventory data is synchronized, enable the
incremental consumer group. Based on the idempotence of Elasticsearch
operations on data, when the new consumer group catches up with the previous
consumer group, the data on both sides will be consistent.

NO TE

For log migration, data in the source Elasticsearch cluster does not need to be migrated,
and you can skip the inventory data synchronization. After the incremental data
synchronization is complete, synchronize the data for a period of time (for example, three
or seven days), and then directly perform cutover.

----End

1.4 Migration from a Database

Process

Elasticsearch supports full-text search and ad hoc queries. It is often used as a
supplement to relational databases, such as MySQL and GaussDB(for MySQL), to
improve the full-text search and high-concurrency ad hoc query capabilities of
databases.

The following figure shows the process of migrating data from a database.

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 8

Figure 1-3 Migration from a database

This migration solution is convenient and flexible.

● Convenient: You can start a cutover while the CSS synchronizes incremental
data.

● Flexible: Data can be added, deleted, modified, and queried on both sides.

Procedure
Data Replication Service (DRS) can be used to migrate and synchronize data
between relational databases, such as MySQL databases. For details about the
supported database types, see .

Step 1 Set up the data synchronization link. On Huawei Cloud, set up a synchronization
link from a database to CSS.

Step 2 Synchronize data from the database. Use a third-party tool, such as DRS or DataX,
to synchronize data to CSS.

----End

Cloud Search Service
Best Practices 1 Cluster Migration

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 9

2 Cluster Access

2.1 Overview
Elasticsearch clusters support multiple connection modes. You can determine how
to access an Elasticsearch cluster based on the programming language used for
your services. For more information about the clients used for CSS clusters in
different security modes (non-security mode, security mode+HTTP, and security
mode+HTTPS), see Table 2-1.

● CSS provides visualized Kibana and Cerebro APIs for monitoring and operating
clusters. On the CSS console, you can quickly access the Kibana and Cerebro
of an Elasticsearch cluster.

● You can access Elasticsearch clusters by using cURL commands, Java clients,
and Python clients. You can also use Hadoop clients to develop complex
applications. Elasticsearch provides Java clients, including Rest High Level
Client, Rest Low Level Client, and Transport Client. To avoid compatibility
issues, use the Java client that matches your Elasticsearch cluster version.

Table 2-1 Support for access from different clients

Client Cluster in Non-
Security Mode

Cluster in Security
Mode + HTTP

Cluster in Security
Mode + HTTPS

Kibana Supported by clusters in all the three modes. To log in to Kibana
from a cluster in security mode, enter the username and
password for authentication. For details, see .

Cerebro Supported by clusters in all the three modes. To log in to
Cerebro from a cluster in security mode, enter the username and
password for authentication. For details, see .

cURL Supported by clusters in all the three modes. For details about
the commands used for each mode, see Accessing a Cluster
Using cURL Commands.

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 10

Client Cluster in Non-
Security Mode

Cluster in Security
Mode + HTTP

Cluster in Security
Mode + HTTPS

Java (Rest
High Level
Client)

Supported by clusters in all the three modes. For details about
the commands used for each mode, see Accessing a Cluster
Through the Rest High Level Client.

Java (Rest
Low Level
Client)

Supported by clusters in all the three modes. For details about
the commands used for each mode, see Accessing a Cluster
Through the Rest Low Level Client.

Java
(Transport
Client)

Only clusters in
non-security mode
are supported. For
details, see
Accessing the
Cluster Through
the Transport
Client.

Not supported Not supported

Python Supported by clusters in all the three modes. For details about
the commands used for each mode, see Accessing a Cluster
Using Python.

ES-Hadoop Supported by clusters in all the three modes. For details about
the commands used for each mode, see Using ES-Hadoop to
Read and Write Data in Elasticsearch Through Hive.

2.2 Accessing a Cluster Using cURL Commands
If the CSS cluster and ECS are in the same VPC, you can run cURL commands on
the ECS to directly access the Elasticsearch cluster. This method is mainly used to
check whether the client that accesses the cluster can be connected to
Elasticserach nodes.

Prerequisites
● The CSS cluster is available.
● An ECS that meets the following requirements is available:

– The ECS and the CSS cluster must be in the same VPC to ensure network
connectivity.

– The security group of the ECS must be the same as that of the CSS
cluster.
If they are different, change the ECS security group, or configure the
inbound and outbound rules of the group to allow access from all the
security groups of the cluster. For details, see .

For details about how to use the ECS, see .

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 11

Procedure
1. Obtain the private network address of the cluster. It is used to access the

cluster.

a. In the navigation pane on the left, choose Clusters.
b. In the cluster list, select a cluster, and obtain and record its Private

Network Address. Format: <host>:<port> or <host>:<port>,<host>:<port>
If the cluster has only one node, the IP address and port number of only
one node are displayed, for example, 10.62.179.32:9200. If the cluster
has multiple nodes, the IP addresses and port numbers of all nodes are
displayed, for example, 10.62.179.32:9200,10.62.179.33:9200.

2. Run one of the following commands on the ECS to access the cluster. The
access command varies according to the security mode of the cluster.
– Cluster in non-security mode

curl "http://<host>:<port>"

– Cluster in security mode + HTTP
curl -u <user>:<password> "http://<host>:<port>"

– Cluster in security mode + HTTPS
curl -u <user>:<password> -k "https://<host>:<port>"

Table 2-2 Variables

Variable Description

<host> IP address of each node in the cluster. If the cluster
contains multiple nodes, there will be multiple IP
addresses. You can use any of them.

<port> Port number for accessing a cluster node. Generally, the
port number is 9200.

<user> Username for accessing the cluster.

<password> Password of the user.

An access example is as follows:
curl "http://10.62.176.32:9200"

Information similar to the following is displayed:
HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 513

{
 "name" : "xxx-1",
 "cluster_name" : "xxx",
 "cluster_uuid" : "xxx_uuid",
 "version" : {
 "number" : "7.10.2",
 "build_flavor" : "oss",
 "build_type" : "tar",
 "build_hash" : "unknown",
 "build_date" : "unknown",
 "build_snapshot" : true,
 "lucene_version" : "8.7.0",

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 12

 "minimum_wire_compatibility_version" : "6.7.0",
 "minimum_index_compatibility_version" : "6.0.0-beta1"
 },
 "tagline" : "You Know, for Search"
}

NO TE

For more commands, see the Elasticsearch documentation.

2.3 Accessing a Cluster Using Java

2.3.1 Accessing a Cluster Through the Rest High Level Client
Elasticsearch provides SDK (Rest High Level Client) for connecting to a cluster. This
client encapsulates Elasticsearch APIs. You only need to construct required
structures to access the Elasticsearch cluster. For details about how to use the Rest
Client, see the official document at https://www.elastic.co/guide/en/
elasticsearch/client/java-api-client/master/index.html.

This section describes how to use the Rest High Level Client to access the CSS
cluster. The Rest High Level Client can be connected to the cluster in any of the
following ways:

● Connecting to a Non-Security Cluster Through the Rest High Level Client:
applicable to clusters in non-security mode

● Connecting to a Security Cluster Through Rest High Level Client (Without
Security Certificates): applicable to clusters in security mode+HTTP, and to
clusters in security mode+HTTPS (without using certificates)

● Connecting to a Security Cluster Through Rest High Level Client (With
Security Certificates): applicable to clusters in security mode+HTTPS

Precautions
You are advised to use the Rest High Level Client version that matches the
Elasticsearch version. For example, use Rest High Level Client 7.6.2 to access the
Elasticsearch cluster 7.6.2. If your Java Rest High Level Client version is later than
the Elasticsearch cluster and incompatible with a few requests, you can use
RestHighLevelClient.getLowLevelClient() to obtain Low Level Client and
customize the Elasticsearch request content.

Prerequisites
● The CSS cluster is available.
● Ensure that the server running Java can communicate with the CSS cluster.
● Install JDK 1.8 on the server. You can download JDK 1.8 from: https://

www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

● Declare Java dependencies.
7.6.2 indicates the version of the Elasticsearch Java client.
– Maven mode:

<dependency>
 <groupId>org.elasticsearch.client</groupId>

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 13

https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html?spm=a2c4g.11186623.0.0.18211315kMUlbd
https://www.elastic.co/guide/en/elasticsearch/client/java-api-client/master/index.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api-client/master/index.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

 <artifactId>elasticsearch-rest-high-level-client</artifactId>
 <version>7.6.2</version>
</dependency>
<dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>7.6.2</version>
</dependency>

– Gradle mode:
compile group: 'org.elasticsearch.client', name: 'elasticsearch-rest-high-level-client', version:
'7.6.2'

Connecting to a Non-Security Cluster Through the Rest High Level Client
You can use the Rest High Level Client to connect to a non-security cluster and
check whether the test index exists. The sample code is as follows:

import org.apache.http.HttpHost;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;

import java.io.IOException;
import java.util.Arrays;
import java.util.List;

/**
* Use Rest Hive Level to connect to a non-security cluster.
 */
public class Main {
 public static void main(String[] args) throws IOException {
 List<String> host = Arrays.asList("x.x.x.x", "x.x.x.x");
 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, 9200, "http"));
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 GetIndexRequest indexRequest = new GetIndexRequest("test");
 boolean exists = client.indices().exists(indexRequest, RequestOptions.DEFAULT);
 System.out.println(exists);
 client.close();
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }
}

host indicates the IP address list of each node in the cluster. If there are multiple
IP addresses, separate them with commas (,). test indicates the index name to be
queried.

Connecting to a Security Cluster Through Rest High Level Client (Without
Security Certificates)

You can connect to a cluster in security mode+HTTP or a cluster in security mode
+ HTTPS (without using certificates).

The sample code is as follows:

import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 14

import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthRequest;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.common.Nullable;

import java.io.IOException;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;

/**
* Connect to a security cluster through Rest High Level (without using certificates).
 */
public class Main {
 /**
* Create a class for the client. Define the create function.
 */
 public static RestHighLevelClient create(List<String> host, int port, String protocol, int connectTimeout,
int connectionRequestTimeout, int socketTimeout, String username, String password) throws IOException{
 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(username,
password));
 SSLContext sc = null;
 try {
 sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 } catch (KeyManagementException | NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new NullHostNameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig -> requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 logger.info("es rest client build success {} ", client);

 ClusterHealthRequest request = new ClusterHealthRequest();
 ClusterHealthResponse response = client.cluster().health(request, RequestOptions.DEFAULT);
 logger.info("es rest client health response {} ", response);
 return client;
 }

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 15

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }

 /**
 * Configure trustAllCerts to ignore the certificate configuration.
 */
 public static TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 }
 };

 private static final Logger logger = LogManager.getLogger(Main.class);

 static class SecuredHttpClientConfigCallback implements RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;
 /**
 * The {@link SSLIOSessionStrategy} for all requests to enable SSL / TLS encryption.
 */
 private final SSLIOSessionStrategy sslStrategy;
 /**
 * Create a new {@link SecuredHttpClientConfigCallback}.
 *
 * @param credentialsProvider The credential provider, if a username/password have been supplied
 * @param sslStrategy The SSL strategy, if SSL / TLS have been supplied
 * @throws NullPointerException if {@code sslStrategy} is {@code null}
 */
 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }
 /**
 * Get the {@link CredentialsProvider} that will be added to the HTTP client.
 *
 * @return Can be {@code null}.
 */
 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }
 /**
 * Get the {@link SSLIOSessionStrategy} that will be added to the HTTP client.
 *
 * @return Never {@code null}.
 */
 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }
 /**

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 16

 * Sets the {@linkplain HttpAsyncClientBuilder#setDefaultCredentialsProvider(CredentialsProvider)
credential provider},
 *
 * @param httpClientBuilder The client to configure.
 * @return Always {@code httpClientBuilder}.
 */
 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder httpClientBuilder) {
 // enable SSL / TLS
 httpClientBuilder.setSSLStrategy(sslStrategy);
 // enable user authentication
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }
 }

 public static class NullHostNameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(String arg0, SSLSession arg1) {
 return true;
 }
 }

 /**
* The following is an example of the main function. Call the create function to create a client and check
whether the test index exists.
 */
 public static void main(String[] args) throws IOException {
 RestHighLevelClient client = create(Arrays.asList("x.x.x.x", "x.x.x.x"), 9200, "https", 1000, 1000, 1000,
"username", "password");
 GetIndexRequest indexRequest = new GetIndexRequest("test");
 boolean exists = client.indices().exists(indexRequest, RequestOptions.DEFAULT);
 System.out.println(exists);
 client.close();
 }
}

Table 2-3 Variables

Parameter Description

host List of the IP addresses of Elasticsearch
nodes (or independent Client node).
Multiple IP addresses are separated
using commas (,).

port Access port of the Elasticsearch cluster.
The default value is 9200.

protocol Connection protocol, which can be
http or https.

connectTimeout Socket connection timeout period.

connectionRequestTimeout Timeout period of a socket connection
request.

socketTimeout Timeout period of a socket request.

username Username for accessing the cluster.

password Password of the user.

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 17

Connecting to a Security Cluster Through Rest High Level Client (With
Security Certificates)

You can use a security certificate to connect to a cluster in security mode + HTTPS.

1. Obtain the security certificate CloudSearchService.cer.

a. Log in to the CSS management console.
b. In the navigation pane, choose Clusters. The cluster list is displayed.
c. Click the name of a cluster to go to the cluster details page.
d. On the Configuration page, click Download Certificate next to HTTPS

Access.
2. Convert the security certificate CloudSearchService.cer. Upload the

downloaded security certificate to the client and use keytool to convert
the .cer certificate into a .jks certificate that can be read by Java.
– In Linux, run the following command to convert the certificate:

keytool -import -alias newname -keystore ./truststore.jks -file ./CloudSearchService.cer

– In Windows, run the following command to convert the certificate:
keytool -import -alias newname -keystore .\truststore.jks -file .\CloudSearchService.cer

In the preceding command, newname indicates the user-defined certificate
name.
After this command is executed, you will be prompted to set the certificate
password and confirm the password. Securely store the password. It will be
used for accessing the cluster.

3. Access the cluster. The sample code is as follows:
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.conn.ssl.NoopHostnameVerifier;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthRequest;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.common.Nullable;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import javax.net.ssl.SSLContext;

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 18

import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;

/**
* Use Rest Hive Level to connect to a security cluster (using an HTTPS certificate).
 */
public class Main {
 public static RestHighLevelClient create(List<String> host, int port, String protocol, int
connectTimeout, int connectionRequestTimeout, int socketTimeout, String username, String password,
String cerFilePath,
 String cerPassword) throws IOException {

 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 TrustManager[] tm = {new MyX509TrustManager(cerFilePath, cerPassword)};
 sc = SSLContext.getInstance("SSL", "SunJSSE");
 //You can also use SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
 sc.init(null, tm, new SecureRandom());
 } catch (Exception e) {
 e.printStackTrace();
 }

 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NoopHostnameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 logger.info("es rest client build success {} ", client);

 ClusterHealthRequest request = new ClusterHealthRequest();
 ClusterHealthResponse response = client.cluster().health(request, RequestOptions.DEFAULT);
 logger.info("es rest client health response {} ", response);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }

 /**
 * SecuredHttpClientConfigCallback class definition
 */
 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;

 private final SSLIOSessionStrategy sslStrategy;

 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 19

 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }

 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }

 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 httpClientBuilder.setSSLStrategy(sslStrategy);
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }
 }

 private static final Logger logger = LogManager.getLogger(Main.class);

 public static class MyX509TrustManager implements X509TrustManager {
 X509TrustManager sunJSSEX509TrustManager;

 MyX509TrustManager(String cerFilePath, String cerPassword) throws Exception {
 File file = new File(cerFilePath);
 if (!file.isFile()) {
 throw new Exception("Wrong Certification Path");
 }
 System.out.println("Loading KeyStore " + file + "...");
 InputStream in = new FileInputStream(file);
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(in, cerPassword.toCharArray());
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509", "SunJSSE");
 tmf.init(ks);
 TrustManager[] tms = tmf.getTrustManagers();
 for (TrustManager tm : tms) {
 if (tm instanceof X509TrustManager) {
 sunJSSEX509TrustManager = (X509TrustManager) tm;
 return;
 }
 }
 throw new Exception("Couldn't initialize");
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
 }

 /**
* The following is an example of the main function. Call the create function to create a client and
check whether the test index exists.
 */

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 20

 public static void main(String[] args) throws IOException {
 RestHighLevelClient client = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200,
"https", 1000, 1000, 1000, "username", "password", "cerFilePath", "cerPassword");
 GetIndexRequest indexRequest = new GetIndexRequest("test");
 boolean exists = client.indices().exists(indexRequest, RequestOptions.DEFAULT);
 System.out.println(exists);
 client.close();
 }
}

Table 2-4 Function parameters

Name Description

host List of the IP addresses of
Elasticsearch nodes (or independent
Client node). Multiple IP addresses
are separated using commas (,).

port Access port of the Elasticsearch
cluster. The default value is 9200.

protocol Connection protocol. Set this
parameter to https.

connectTimeout Socket connection timeout period.

connectionRequestTimeout Timeout period of a socket
connection request.

socketTimeout Timeout period of a socket request.

username Username for accessing the cluster.

password Password of the user.

cerFilePath Certificate path.

cerPassword Certificate password.

2.3.2 Accessing a Cluster Through the Rest Low Level Client
The high-level client is encapsulated based on the low-level client. If the method
calls (such as .search and .bulk) in the high-level client cannot meet the
requirements or has compatibility issues, you can use the low-level client. You can
even use HighLevelClient.getLowLevelClient() to directly obtain a low-level
client. A low-level client allows you to define the request structure, which is more
flexible and supports all the request formats of Elasticsearch, such as GET, POST,
DELETE, and HEAD.

This section describes how to use the Rest Low Level Client to access the CSS
cluster. The methods are as follows. For each method, you can directly create a
REST low-level client, or create a high-level client and then invoke
getLowLevelClient() to obtain a low-level client.

● Connecting to a Non-Security Cluster Through the Rest Low Level Client:
applicable to clusters in non-security mode

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 21

● Connecting to a Security Cluster Through Rest Low Level Client (Without
Security Certificates): applicable to clusters in security mode+HTTP, and to
clusters in security mode+HTTPS (without using certificates)

● Connecting to a Security Cluster Through Rest Low Level Client (With
Security Certificates): applicable to clusters in security mode+HTTPS

Precautions
You are advised to use the Rest Low Level Client version that matches the
Elasticsearch version. For example, use Rest Low Level Client 7.6.2 to access the
Elasticsearch cluster 7.6.2.

Prerequisites
● The CSS cluster is available.
● Ensure that the server running Java can communicate with the CSS cluster.
● Install JDK 1.8 on the server. You can download JDK 1.8 from: https://

www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

● Declare the Apache version in Maven mode. The following code uses version
7.6.2 as an example.
7.6.2 indicates the version of the Elasticsearch Java client.
<dependency>
 <groupId>org.elasticsearch.client</groupId>
 <artifactId>elasticsearch-rest-client</artifactId>
 <version>7.6.2</version>
</dependency>
<dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>7.6.2</version>
</dependency>

Connecting to a Non-Security Cluster Through the Rest Low Level Client
● Method 1: Directly create a Rest Low Level Client.

import org.apache.http.HttpHost;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;

import java.io.IOException;
import java.util.Arrays;
import java.util.List;

public class Main {

 public static void main(String[] args) throws IOException {
 List<String> host = Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx");
 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, 9200, "http"));
 /**
 * Create a Rest Low Level Client.
 */
 RestClient lowLevelClient = builder.build();
 /**
 * Check whether the test index exists. If the index exists, 200 is returned. If the index does not
exist, 404 is returned.
 */
 Request request = new Request("HEAD", "/test");

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 22

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }
}

● Method 2: Create a high-level client and then call getLowLevelClient() to
obtain a low-level client.
import org.apache.http.HttpHost;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;

import java.io.IOException;
import java.util.Arrays;
import java.util.List;

public class Main {

 public static void main(String[] args) throws IOException {
 List<String> host = Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx");
 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, 9200, "http"));
 final RestHighLevelClient restHighLevelClient = new RestHighLevelClient(builder);
 /**
 * Create a high-level client and then call getLowLevelClient() to obtain a low-level client.
The code differs from the client creation code only in the following line:
 */
 final RestClient lowLevelClient = restHighLevelClient.getLowLevelClient();
 /**
 * Check whether the test index exists. If the index exists, 200 is returned. If the index does not
exist, 404 is returned.
 */
 Request request = new Request("HEAD", "/test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }
}

host indicates the IP address list of each node in the cluster. If there are multiple
IP addresses, separate them with commas (,). test indicates the index name to be
queried.

Connecting to a Security Cluster Through Rest Low Level Client (Without
Security Certificates)

● Method 1: Directly create a Rest Low Level Client.
import org.apache.http.HttpHost;
import org.apache.http.HttpResponse;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 23

import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.client.DefaultConnectionKeepAliveStrategy;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.http.protocol.HttpContext;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.common.Nullable;

import java.io.IOException;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.TimeUnit;

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;
import javax.net.ssl.TrustManager;import javax.net.ssl.X509TrustManager;

public class Main {

 /**
 * Create a class for the client. Define the create function.
 */
 public static RestClient create(List<String> host, int port, String protocol, int connectTimeout, int
connectionRequestTimeout, int socketTimeout, String username, String password) throws
IOException {
 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 } catch (KeyManagementException | NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NullHostNameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestClient client = builder.build();
 logger.info("es rest client build success {} ", client);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 24

 }

 /**
 * Configure trustAllCerts to ignore the certificate configuration.
 */
 public static TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 }
 };

 /**
* The CustomConnectionKeepAliveStrategy function is used to set the connection keepalive time when
there are a large number of short connections or when the number of data requests is small.
 */
 public static class CustomConnectionKeepAliveStrategy extends
DefaultConnectionKeepAliveStrategy {
 public static final CustomConnectionKeepAliveStrategy INSTANCE = new
CustomConnectionKeepAliveStrategy();

 private CustomConnectionKeepAliveStrategy() {
 super();
 }

 /**
 * Maximum keep alive time (minutes)
 * The default value is 10 minutes. You can set it based on the number of TCP connections in
TIME_WAIT state. If there are too many TCP connections, you can increase the value.
 */
 private final long MAX_KEEP_ALIVE_MINUTES = 10;

 @Override
 public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
 long keepAliveDuration = super.getKeepAliveDuration(response, context);
 // <0 indicates that the keepalive period is unlimited.
 // Change the period from unlimited to a default period.
 if (keepAliveDuration < 0) {
 return TimeUnit.MINUTES.toMillis(MAX_KEEP_ALIVE_MINUTES);
 }
 return keepAliveDuration;
 }
 }

 private static final Logger logger = LogManager.getLogger(Main.class);

 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;
 /**
 * The {@link SSLIOSessionStrategy} for all requests to enable SSL / TLS encryption.
 */
 private final SSLIOSessionStrategy sslStrategy;
 /**
 * Create a new {@link SecuredHttpClientConfigCallback}.
 *

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 25

 * @param credentialsProvider The credential provider, if a username/password have been
supplied
 * @param sslStrategy The SSL strategy, if SSL / TLS have been supplied
 * @throws NullPointerException if {@code sslStrategy} is {@code null}
 */
 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }
 /**
 * Get the {@link CredentialsProvider} that will be added to the HTTP client.
 *
 * @return Can be {@code null}.
 */
 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }
 /**
 * Get the {@link SSLIOSessionStrategy} that will be added to the HTTP client.
 *
 * @return Never {@code null}.
 */
 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }
 /**
 * Sets the {@linkplain
HttpAsyncClientBuilder#setDefaultCredentialsProvider(CredentialsProvider) credential provider},
 *
 * @param httpClientBuilder The client to configure.
 * @return Always {@code httpClientBuilder}.
 */
 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 // enable SSL / TLS
 httpClientBuilder.setSSLStrategy(sslStrategy);
 // enable user authentication
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }
 }

 public static class NullHostNameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(String arg0, SSLSession arg1) {
 return true;
 }
 }

 /**
 * The following is an example of the main function. Call the create function to create a Rest Low
Level Client and check whether the test index exists.
 */
 public static void main(String[] args) throws IOException {
 RestClient lowLevelClient = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200, "http",
1000, 1000, 1000, "username", "password");
 Request request = new Request("HEAD", "/test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }
}

● Method 2: Create a high-level client and then call getLowLevelClient() to
obtain a low-level client.

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 26

import org.apache.http.HttpHost;
import org.apache.http.HttpResponse;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.client.DefaultConnectionKeepAliveStrategy;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.http.protocol.HttpContext;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.common.Nullable;

import java.io.IOException;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.TimeUnit;

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;
import javax.net.ssl.TrustManager;import javax.net.ssl.X509TrustManager;

import org.elasticsearch.client.RestHighLevelClient;

public class Main13 {

 /**
 * Create a class for the client. Define the create function.
 */
 public static RestHighLevelClient create(List<String> host, int port, String protocol, int
connectTimeout, int connectionRequestTimeout, int socketTimeout, String username, String
password) throws IOException {

 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 } catch (KeyManagementException | NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NullHostNameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 logger.info("es rest client build success {} ", client);

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 27

 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }

 /**
 * Configure trustAllCerts to ignore the certificate configuration.
 */
 public static TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 }
 };

 /**
* The CustomConnectionKeepAliveStrategy function is used to set the connection keepalive time when
there are a large number of short connections or when the number of data requests is small.
 */
 public static class CustomConnectionKeepAliveStrategy extends
DefaultConnectionKeepAliveStrategy {
 public static final CustomConnectionKeepAliveStrategy INSTANCE = new
CustomConnectionKeepAliveStrategy();

 private CustomConnectionKeepAliveStrategy() {
 super();
 }

 /**
 * Maximum keep alive time (minutes)
 * The default value is 10 minutes. You can set it based on the number of TCP connections in
TIME_WAIT state. If there are too many TCP connections, you can increase the value.
 */
 private final long MAX_KEEP_ALIVE_MINUTES = 10;

 @Override
 public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
 long keepAliveDuration = super.getKeepAliveDuration(response, context);
 // <0 indicates that the keepalive period is unlimited.
 // Change the period from unlimited to a default period.
 if (keepAliveDuration < 0) {
 return TimeUnit.MINUTES.toMillis(MAX_KEEP_ALIVE_MINUTES);
 }
 return keepAliveDuration;
 }
 }

 private static final Logger logger = LogManager.getLogger(Main.class);

 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 28

 private final CredentialsProvider credentialsProvider;
 /**
 * The {@link SSLIOSessionStrategy} for all requests to enable SSL / TLS encryption.
 */
 private final SSLIOSessionStrategy sslStrategy;
 /**
 * Create a new {@link SecuredHttpClientConfigCallback}.
 *
 * @param credentialsProvider The credential provider, if a username/password have been
supplied
 * @param sslStrategy The SSL strategy, if SSL / TLS have been supplied
 * @throws NullPointerException if {@code sslStrategy} is {@code null}
 */
 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }
 /**
 * Get the {@link CredentialsProvider} that will be added to the HTTP client.
 *
 * @return Can be {@code null}.
 */
 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }
 /**
 * Get the {@link SSLIOSessionStrategy} that will be added to the HTTP client.
 *
 * @return Never {@code null}.
 */
 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }
 /**
 * Sets the {@linkplain
HttpAsyncClientBuilder#setDefaultCredentialsProvider(CredentialsProvider) credential provider},
 *
 * @param httpClientBuilder The client to configure.
 * @return Always {@code httpClientBuilder}.
 */
 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 // enable SSL / TLS
 httpClientBuilder.setSSLStrategy(sslStrategy);
 // enable user authentication
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }
 }

 public static class NullHostNameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(String arg0, SSLSession arg1) {
 return true;
 }
 }

 /**
* The following is an example of the main function. Call the create function to create a high-level
client, call the getLowLevelClient() function to obtain a low-level client, and check whether the test
index exists.
 */
 public static void main(String[] args) throws IOException {
 RestHighLevelClient client = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200,

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 29

"http", 1000, 1000, 1000, "username", "password");
 RestClient lowLevelClient = client.getLowLevelClient();
 Request request = new Request("HEAD", "test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }
}

Table 2-5 Variables

Parameter Description

host List of the IP addresses of Elasticsearch
nodes (or independent Client node).
Multiple IP addresses are separated
using commas (,).

port Access port of the Elasticsearch cluster.
The default value is 9200.

protocol Connection protocol, which can be
http or https.

connectTimeout Socket connection timeout period.

connectionRequestTimeout Timeout period of a socket connection
request.

socketTimeout Timeout period of a socket request.

username Username for accessing the cluster.

password Password of the user.

Connecting to a Security Cluster Through Rest Low Level Client (With
Security Certificates)

● Method 1: Directly create a Rest Low Level Client.
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.conn.ssl.NoopHostnameVerifier;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.common.Nullable;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.SecureRandom;

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 30

import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import javax.net.ssl.SSLContext;import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;

public class Main13 {

 private static final Logger logger = LogManager.getLogger(Main.class);

 /**
 * Create a class for the client. Define the create function.
 */
 public static RestClient create(List<String> host, int port, String protocol, int connectTimeout, int
connectionRequestTimeout, int socketTimeout, String username, String password, String cerFilePath,
String cerPassword) throws IOException {
 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 TrustManager[] tm = {new MyX509TrustManager(cerFilePath, cerPassword)};
 sc = SSLContext.getInstance("SSL", "SunJSSE");
 //You can also use SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
 sc.init(null, tm, new SecureRandom());
 } catch (Exception e) {
 e.printStackTrace();
 }

 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NoopHostnameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestClient client = builder.build();
 logger.info("es rest client build success {} ", client);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);}

 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;

 private final SSLIOSessionStrategy sslStrategy;

 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 31

 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }

 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }

 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 httpClientBuilder.setSSLStrategy(sslStrategy);
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }}

 public static class MyX509TrustManager implements X509TrustManager {
 X509TrustManager sunJSSEX509TrustManager;

 MyX509TrustManager(String cerFilePath, String cerPassword) throws Exception {
 File file = new File(cerFilePath);
 if (!file.isFile()) {
 throw new Exception("Wrong Certification Path");
 }
 System.out.println("Loading KeyStore " + file + "...");
 InputStream in = new FileInputStream(file);
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(in, cerPassword.toCharArray());
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509", "SunJSSE");
 tmf.init(ks);
 TrustManager[] tms = tmf.getTrustManagers();
 for (TrustManager tm : tms) {
 if (tm instanceof X509TrustManager) {
 sunJSSEX509TrustManager = (X509TrustManager) tm;
 return;
 }
 }
 throw new Exception("Couldn't initialize");
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
 }

 /**
 * The following is an example of the main function. Call the create function to create a Rest Low
Level Client and check whether the test index exists.
 */
 public static void main(String[] args) throws IOException {
 RestClient lowLevelClient = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200,
"https", 1000, 1000, 1000, "username", "password", "cerFilePath", "cerPassword");
 Request request = new Request("HEAD", "test");

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 32

 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }
}

● Method 2: Create a high-level client and then call getLowLevelClient() to
obtain a low-level client.
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.conn.ssl.NoopHostnameVerifier;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthRequest;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthResponse;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.Nullable;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import javax.net.ssl.SSLContext;import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;

public class Main {

 private static final Logger logger = LogManager.getLogger(Main.class);

 /**
 * Create a class for the client. Define the create function.
 */
 public static RestHighLevelClient create(List<String> host, int port, String protocol, int
connectTimeout, int connectionRequestTimeout, int socketTimeout, String username, String password,
String cerFilePath, String cerPassword) throws IOException {
 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 TrustManager[] tm = {new MyX509TrustManager(cerFilePath, cerPassword)};
 sc = SSLContext.getInstance("SSL", "SunJSSE");
 //You can also use SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
 sc.init(null, tm, new SecureRandom());
 } catch (Exception e) {
 e.printStackTrace();
 }

 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NoopHostnameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 33

SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 logger.info("es rest client build success {} ", client);

 ClusterHealthRequest request = new ClusterHealthRequest();
 ClusterHealthResponse response = client.cluster().health(request, RequestOptions.DEFAULT);
 logger.info("es rest client health response {} ", response);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);}

 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;

 private final SSLIOSessionStrategy sslStrategy;

 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }

 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }

 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }

 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 httpClientBuilder.setSSLStrategy(sslStrategy);
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }}

 public static class MyX509TrustManager implements X509TrustManager {
 X509TrustManager sunJSSEX509TrustManager;

 MyX509TrustManager(String cerFilePath, String cerPassword) throws Exception {
 File file = new File(cerFilePath);
 if (!file.isFile()) {
 throw new Exception("Wrong Certification Path");
 }
 System.out.println("Loading KeyStore " + file + "...");
 InputStream in = new FileInputStream(file);
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(in, cerPassword.toCharArray());
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509", "SunJSSE");

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 34

 tmf.init(ks);
 TrustManager[] tms = tmf.getTrustManagers();
 for (TrustManager tm : tms) {
 if (tm instanceof X509TrustManager) {
 sunJSSEX509TrustManager = (X509TrustManager) tm;
 return;
 }
 }
 throw new Exception("Couldn't initialize");
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
 }

 /**
* The following is an example of the main function. Call the create function to create a high-level
client, call the getLowLevelClient() function to obtain a low-level client, and check whether the test
index exists.
 */
 public static void main(String[] args) throws IOException {
 RestHighLevelClient client = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200,
"https", 1000, 1000, 1000, "username", "password", "cerFilePath", "cerPassword");
 RestClient lowLevelClient = client.getLowLevelClient();
 Request request = new Request("HEAD", "test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }
}

Table 2-6 Function parameters

Name Description

host List of the IP addresses of Elasticsearch
nodes (or independent Client node).
Multiple IP addresses are separated
using commas (,).

port Access port of the Elasticsearch cluster.
The default value is 9200.

protocol Connection protocol. Set this
parameter to https.

connectTimeout Socket connection timeout period.

connectionRequestTimeout Timeout period of a socket connection
request.

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 35

Name Description

socketTimeout Timeout period of a socket request.

username Username for accessing the cluster.

password Password of the user.

cerFilePath Certificate path.

cerPassword Certificate password.

2.3.3 Accessing the Cluster Through the Transport Client
You can use Transport Client to access a CSS cluster in non-security mode. If the
cluster is in security mode, you are advised to use Rest High Level Client to access
the Elasticsearch cluster.

Precautions
You are advised to use the Transport Client version that matches the Elasticsearch
version. For example, use Transport Client 7.6.2 to access the Elasticsearch cluster
7.6.2.

Prerequisites
● The CSS cluster is available.
● Ensure that the server running Java can communicate with the CSS cluster.
● Install JDK 1.8 on the server. You can download JDK 1.8 from: https://

www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

● Declare Java dependencies.
7.6.2 indicates the version of the Elasticsearch Java client.
<dependency>
 <groupId>org.elasticsearch.client</groupId>
 <artifactId>transport</artifactId>
 <version>7.6.2</version>
</dependency>
<dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>7.6.2</version>
</dependency>

Procedure
The following code is an example of using Transport Client to connect to the
Elasticsearch cluster and check whether the test index exists.

import org.elasticsearch.action.ActionFuture;
import org.elasticsearch.action.admin.indices.exists.indices.IndicesExistsRequest;
import org.elasticsearch.action.admin.indices.exists.indices.IndicesExistsResponse;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.TransportAddress;

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 36

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

import org.elasticsearch.transport.client.PreBuiltTransportClient;

import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.concurrent.ExecutionException;

public class Main {
 public static void main(String[] args) throws ExecutionException, InterruptedException,
UnknownHostException {
 String cluster_name = "xxx";
 String host1 = "x.x.x.x";
 String host2 = "y.y.y.y";
 Settings settings = Settings.builder()
 .put("client.transport.sniff",false)
 .put("cluster.name", cluster_name)
 .build();
 TransportClient client = new PreBuiltTransportClient(settings)
 .addTransportAddress(new TransportAddress(InetAddress.getByName(host1), 9300))
 .addTransportAddress(new TransportAddress(InetAddress.getByName(host2), 9300));
 IndicesExistsRequest indicesExistsRequest = new IndicesExistsRequest("test");
 ActionFuture<IndicesExistsResponse> exists = client.admin().indices().exists(indicesExistsRequest);
 System.out.println(exists.get().isExists());
 }
}

In the preceding information, cluster_name indicates the cluster name, and host1
and host2 indicate the IP addresses of the cluster nodes. You can run the GET
_cat/nodes command to view the IP addresses of the nodes.

2.4 Accessing a Cluster Using Python
You can access a CSS cluster using Python.

Prerequisites
● The CSS cluster is available.
● Ensure that the server running Python can communicate with the CSS cluster.

Procedure
1. Install the Elasticsearch Python client. You are advised to use the client

version that matches the Elasticsearch version. For example, if the cluster
version is 7.6.2, install the Elasticsearch Python client 7.6.
pip install Elasticsearch==7.6.2

2. Create an Elasticsearch client and check whether the test index exists. The
examples for clusters in different security modes are as follows:
– Cluster in non-security mode

from elasticsearch import Elasticsearch

class ElasticFactory(object):

 def __init__(self, host: list, port: str, username: str, password: str):
 self.port = port
 self.host = host
 self.username = username
 self.password = password

 def create(self) -> Elasticsearch:
 addrs = []
 for host in self.host:
 addr = {'host': host, 'port': self.port}
 addrs.append(addr)

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 37

 if self.username and self.password:
 elasticsearch = Elasticsearch(addrs, http_auth=(self.username, self.password))
 else:
 elasticsearch = Elasticsearch(addrs)
 return elasticsearch

es = ElasticFactory(["xxx.xxx.xxx.xxx"], "9200", None, None).create()
print(es.indices.exists(index='test'))

– Cluster in security mode + HTTP
from elasticsearch import Elasticsearch

class ElasticFactory(object):

 def __init__(self, host: list, port: str, username: str, password: str):
 self.port = port
 self.host = host
 self.username = username
 self.password = password

 def create(self) -> Elasticsearch:
 addrs = []
 for host in self.host:
 addr = {'host': host, 'port': self.port}
 addrs.append(addr)

 if self.username and self.password:
 elasticsearch = Elasticsearch(addrs, http_auth=(self.username, self.password))
 else:
 elasticsearch = Elasticsearch(addrs)
 return elasticsearch

es = ElasticFactory(["xxx.xxx.xxx.xxx"], "9200", "username", "password").create()
print(es.indices.exists(index='test'))

– Cluster in security mode + HTTPS
from elasticsearch import Elasticsearch
import ssl

class ElasticFactory(object):

 def __init__(self, host: list, port: str, username: str, password: str):
 self.port = port
 self.host = host
 self.username = username
 self.password = password

 def create(self) -> Elasticsearch:
 context = ssl._create_unverified_context()

 addrs = []
 for host in self.host:
 addr = {'host': host, 'port': self.port}
 addrs.append(addr)

 if self.username and self.password:
 elasticsearch = Elasticsearch(addrs, http_auth=(self.username, self.password),
scheme="https", ssl_context=context)
 else:
 elasticsearch = Elasticsearch(addrs)
 return elasticsearch

es = ElasticFactory(["xxx.xxx.xxx.xxx"], "9200", "username", "password").create()
print(es.indices.exists(index='test'))

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 38

Table 2-7 Variables

Name Description

host List of the IP addresses of
Elasticsearch nodes (or independent
Client node). Multiple IP addresses
are separated using commas (,).

port Access port of the Elasticsearch
cluster. Enter 9200.

username Username for accessing the cluster.

password Password of the user.

3. Create a cluster index through the Elasticsearch client.
mappings = {
 "settings": {
 "index": {
 "number_of_shards": number_of_shards,
 "number_of_replicas": 1,
 },
 },
 "mappings": {
 properties
 }
}
result = es.indices.create(index=index, body=mappings)

4. Query the index created in the previous step through the Elasticsearch client.
body = {
 "query": {
 "match": {
 "Query field": "Query content"
 }
 }
}
result = es.search(index=index, body=body)

2.5 Using ES-Hadoop to Read and Write Data in
Elasticsearch Through Hive

The Elasticsearch-Hadoop (ES-Hadoop) connector combines the massive data
storage and in-depth processing capabilities of Hadoop with the real-time search
and analysis capabilities of Elasticsearch. It allows you to quickly get to know big
data and work better in the Hadoop ecosystem.

This section uses the ES-Hadoop of MRS as an example to describe how to
connect to a CSS cluster. You can configure any other applications that need to
use the Elasticsearch cluster. Ensure the network connection between the client
and the Elasticsearch cluster is normal.

Prerequisites
● The CSS cluster is available.

● The client can communicate with the CSS cluster.

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 39

● The CSS and MRS clusters are in the same region, AZ, VPC, and subnet.

Figure 2-1 CSS cluster information

Procedure
1. Obtain the private network address of the cluster. It is used to access the

cluster.

a. In the navigation pane on the left, choose Clusters.
b. In the cluster list, select a cluster, and obtain and record its Private

Network Address. Format: <host>:<port> or <host>:<port>,<host>:<port>
If the cluster has only one node, the IP address and port number of only
one node are displayed, for example, 10.62.179.32:9200. If the cluster
has multiple nodes, the IP addresses and port numbers of all nodes are
displayed, for example, 10.62.179.32:9200,10.62.179.33:9200.

2. Log in to an MRS cluster node. For details, see .
3. Run the cURL command on an MRS cluster node to check the network

connectivity. Ensure every node in the MRS cluster can connect to the CSS
cluster.
– Cluster in non-security mode

curl -X GET http://<host>:<port>

– Cluster in security mode + HTTP
curl -X GET http://<host>:<port> -u <user>:<password>

– Cluster in security mode + HTTPS
curl -X GET https://<host>:<port> -u <user>:<password> -ik

Table 2-8 Variables

Variable Description

<host> IP address of each node in the cluster. If the cluster
contains multiple nodes, there will be multiple IP
addresses. You can use any of them.

<port> Port number for accessing a cluster node. Generally, the
port number is 9200.

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 40

Variable Description

<user> Username for accessing the cluster.

<password> Password of the user.

4. Download the ES-Hadoop lib package and decompress it to obtain the

elasticsearch-hadoop-x.x.x.jar file. The version must be the same as the CSS
cluster version. For example, if the CSS cluster version is 7.6.2, you are advised
to download elasticsearch-hadoop-7.6.2.zip.

5. Download the httpclient dependency package commons-
httpclient:commons-httpclient-3.1.jar. In the package name, 3.1 indicates
the version number. Select the package of the version you need.

6. Install the MRS client. If the MRS client has been installed, skip this step. For
details, see .

7. Log in to the MRS client. Upload the JAR dependency packages of ES-Hadoop
and httpclient to the MRS client.

8. Create an HDFS directory on the MRS client. Upload the ES-Hadoop lib
package and the httpclient dependency package to the directory.
hadoop fs -mkdir /tmp/hadoop-es
hadoop fs -put elasticsearch-hadoop-x.x.x.jar /tmp/hadoop-es
hadoop fs -put commons-httpclient-3.1.jar /tmp/hadoop-es

9. Log in to the Hive client from the MRS client. For details, see .
10. On the Hive client, add the ES-Hadoop lib package and the httpclient

dependency package. This command is valid only for the current session.
Enter beeline or hive to go to the execution page and run the following
commands:
add jar hdfs:///tmp/hadoop-es/commons-httpclient-3.1.jar;
add jar hdfs:///tmp/hadoop-es/elasticsearch-hadoop-x.x.x.jar;

11. On the Hive client, create a Hive foreign table.
– Cluster in non-security mode

CREATE EXTERNAL table IF NOT EXISTS student(
 id BIGINT,
 name STRING,
 addr STRING
)
STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler'
TBLPROPERTIES(
 'es.nodes' = 'xxx.xxx.xxx.xxx:9200',
 'es.port' = '9200',
 'es.net.ssl' = 'false',
 'es.nodes.wan.only' = 'false',
 'es.nodes.discovery'='false',
 'es.input.use.sliced.partitions'='false',
 'es.resource' = 'student/_doc'
);

– Cluster in security mode + HTTP
CREATE EXTERNAL table IF NOT EXISTS student(
 id BIGINT,
 name STRING,
 addr STRING
)
STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler'
TBLPROPERTIES(
 'es.nodes' = 'xxx.xxx.xxx.xxx:9200',
 'es.port' = '9200',

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 41

https://www.elastic.co/downloads/hadoop
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.1
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.1

 'es.net.ssl' = 'false',
 'es.nodes.wan.only' = 'false',
 'es.nodes.discovery'='false',
 'es.input.use.sliced.partitions'='false',
 'es.nodes.client.only'='true',
 'es.resource' = 'student/_doc',
 'es.net.http.auth.user' = 'username',
 'es.net.http.auth.pass' = 'password'
);

– Cluster in security mode + HTTPS

i. Obtain the security certificate CloudSearchService.cer.

1) Log in to the CSS management console.
2) In the navigation pane, choose Clusters. The cluster list is

displayed.
3) Click the name of a cluster to go to the cluster details page.
4) On the Configuration page, click Download Certificate next to

HTTPS Access.
ii. Convert the security certificate CloudSearchService.cer. Upload the

downloaded security certificate to the client and use keytool to
convert the .cer certificate into a .jks certificate that can be read by
Java.
○ In Linux, run the following command to convert the certificate:

keytool -import -alias newname -keystore ./truststore.jks -file ./
CloudSearchService.cer

○ In Windows, run the following command to convert the
certificate:
keytool -import -alias newname -keystore .\truststore.jks -file .
\CloudSearchService.cer

In the preceding command, newname indicates the user-defined
certificate name.
After this command is executed, you will be prompted to set the
certificate password and confirm the password. Securely store the
password. It will be used for accessing the cluster.

iii. Put the .jks file to the same path of each node in the MRS cluster, for
example, /tmp. You can run the scp command to transfer the file.
Ensure user omm has the permission to read the file. You can run
the following command to set the permission:
chown -R omm truststore.jks

iv. Create a Hive foreign table.
CREATE EXTERNAL table IF NOT EXISTS student(
 id BIGINT,
 name STRING,
 addr STRING
)
STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler'
TBLPROPERTIES(
 'es.nodes' = 'https://xxx.xxx.xxx.xxx:9200',
 'es.port' = '9200',
 'es.net.ssl' = 'true',
 'es.net.ssl.truststore.location' = 'cerFilePath',
 'es.net.ssl.truststore.pass' = 'cerPassword',
 'es.nodes.wan.only' = 'false',
 'es.nodes.discovery'='false',
 'es.nodes.client.only'='true',
 'es.input.use.sliced.partitions'='false',
 'es.resource' = 'student/_doc',

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 42

 'es.net.http.auth.user' = 'username',
 'es.net.http.auth.pass' = 'password'
);

Table 2-9 ES-Hadoop parameters

Parameter Default Value Description

es.nodes localhost Address for accessing the CSS
cluster. You can view private
network address in the cluster
list.

es.port 9200 Port number for accessing a
cluster. Generally, the port
number is 9200.

es.nodes.wan.only false Whether to perform node
sniffing.

es.nodes.discovery true Whether to disable node
discovery.

es.input.use.sliced.partit
ions

true Whether to use slices. Its value
can be:
● true
● false
NOTE

If this parameter is set to true, the
index prefetch time may be
significantly prolonged, and may
even be much longer than the data
query time. You are advised to set
this parameter to false to improve
query efficiency.

es.resource NA Specifies the index and type to
be read and written.

es.net.http.auth.user NA Username for accessing the
cluster. Set this parameter only
if the security mode is enabled.

es.net.http.auth.pass NA Password of the user. Set this
parameter only if the security
mode is enabled.

es.net.ssl false Whether to enable SSL. If SSL is
enabled, you need to configure
the security certificate
information.

es.net.ssl.truststore.loca
tion

NA Path of the .jks certificate file,
for example, file:///tmp/
truststore.jks.

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 43

Parameter Default Value Description

es.nodes.client.only false Check whether the IP address of
an independent Client node is
configured for es.nodes (that is,
whether the Client node is
enabled during Elasticsearch
cluster creation). If yes, change
the value to true, or an error
will be reported, indicating that
the data node cannot be found.

es.net.ssl.truststore.pass NA Password of the .jks certificate
file.

For details about ES-Hadoop configuration items, see the official
configuration description.

12. On the Hive client, insert data.
INSERT INTO TABLE student VALUES (1, "Lucy", "address1"), (2, "Lily", "address2");

13. On the Hive client, run a query.
select * from student;

The query result is as follows:
+-------------+---------------+---------------+
| student.id | student.name | student.addr |
+-------------+---------------+---------------+
| 1 | Lucy | address1 |
| 2 | Lily | address2 |
+-------------+---------------+---------------+
2 rows selected (0.116 seconds)

14. Log in to the CSS console and choose Clusters. Locate the target cluster and
click Access Kibana in the Operation column.

15. On the Dev Tools page of Kibana, run a query and view the result.
GET /student/_search

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 44

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html

Figure 2-2 Kibana query result

Cloud Search Service
Best Practices 2 Cluster Access

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 45

3 Cluster Performance Tuning

3.1 Optimizing Write Performance
Before using a CSS cluster, you are advised to optimize the write performance of
the cluster to improve efficiency.

Data Write Process

Figure 3-1 Data write process

The process of writing data from a client to Elasticsearch is as follows:

1. The client sends a data write request to Node1. Here Node1 is the coordinator
node.

2. Node1 routes the data to shard 2 based on the _id of the data. In this case,
the request is forwarded to Node3 and the write operation is performed.

3. After data is written to the primary shard, the request is forwarded to the
replica shard of Node2. After the data is written to the replica, Node3 reports
the write success to the coordinator node, and the coordinator node reports it
to the client.

An index in Elasticsearch consists of one or more shards. Each shard contains
multiple segments, and each segment is an inverted index.

Cloud Search Service
Best Practices 3 Cluster Performance Tuning

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 46

Figure 3-2 Elasticsearch index composition

When a document is inserted into Elasticsearch, the document is first written to
the buffer and then periodically refreshed from the buffer to the segment. The
refresh frequency is specified by the refresh_interval parameter. By default, data
is refreshed every second.

Figure 3-3 Process of inserting a document into Elasticsearch

Improving Write Performance
In the Elasticsearch data write process, the following solutions can be used to
improve performance:

Table 3-1 Improving write performance

N
o.

Solution Description

1 Use SSDs or
improve
cluster
configuratio
ns.

Using SSDs can greatly speed up data write and merge
operations. For CSS, you are advised to select the ultra-high
I/O storage or ultra-high I/O servers.

2 Use Bulk
APIs.

The client writes data in batches. You are advised to write 1
MB to 10 MB data in each batch.

3 Randomly
generate _id.

If _id is specified, a query operation will be triggered before
data is written, affecting data write performance. In
scenarios where data does not need to be retrieved using
_id, you are advised to use a randomly generated _id.

4 Set a proper
number of
segments.

You are advised to set the number of shards to a multiple
of the number of cluster data nodes. Ensure each shard is
smaller than 50 GB.

Cloud Search Service
Best Practices 3 Cluster Performance Tuning

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 47

N
o.

Solution Description

5 Close
replicas.

Data write and query are performed in off-peak hours.
Close data copies during writing and open them afterwards.
The command for disabling replicas in Elasticsearch 7.x is as
follows:
PUT {index}/_settings
{
 "number_of_replicas": 0
}

6 Adjust the
index refresh
frequency.

During batch data writing, you can set refresh_interval to
a large value or -1 (indicating no refresh), improving the
write performance by reducing refresh.
In Elasticsearch 7.x, run the following command to set the
update time to 15s:
PUT {index}/_settings
{
 "refresh_interval": "15s"
}

7 Change the
number of
write
threads and
the size of
the write
queue.

You can increase the number of write threads and the size
of the write queue, or error code 429 may be returned for
unexpected traffic peaks.
In Elasticsearch 7.x, you can modify the following
parameters to optimize write performance:
thread_pool.write.size and thread_pool.write.queue_size

8 Set a proper
field type.

Specify the type of each field in the cluster, so that
Elasticsearch will not regard the fields as a combination of
keywords and texts, which unnecessarily increase data
volume. Keywords are used for keyword search, and texts
used for full-text search.
For the fields that do not require indexes, you are advised
to set index to false.
In Elasticsearch 7.x, run the following command to set
index to false for field1:
PUT {index}
{
 "mappings": {
 "properties": {
 "field1":{
 "type": "text",
 "index": false
 }
 }
 }
}

Cloud Search Service
Best Practices 3 Cluster Performance Tuning

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 48

N
o.

Solution Description

9 Optimize the
shard
balancing
policy.

By default, Elasticsearch uses the load balance policy based
on the disk capacity. If there are multiple nodes, especially
if some of them are newly added, shards may be unevenly
allocated on the nodes. To avoid such problems, you can set
the index-level parameter
routing.allocation.total_shards_per_node to control the
distribution of index shards on each node. You can set this
parameter in the index template, or modify the setting of
an existing index to make the setting take effect.
Run the following command to modify the setting of an
existing index:
PUT {index}/_settings
{
 "index": {
 "routing.allocation.total_shards_per_node": 2
 }
}

3.2 Optimizing Query Performance
Before using a CSS cluster, you are advised to optimize the query performance of
the cluster to improve efficiency.

Data Query Process

Figure 3-4 Data query process

When a client sends a query request to Elasticsearch, the query process is as
follows:

1. The client sends a data query request to Node1. Here Node1 is the
coordinator node.

2. Node1 selects a shard based on the shard distribution and the index specified
in the query, and then forwards the request to Node1, Node2, and Node3.

Cloud Search Service
Best Practices 3 Cluster Performance Tuning

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 49

3. Each shard executes the query task. After the query succeeds on the shards,
the query results are aggregated to Node1, which returns the results to the
client.

For a query request, five shards can be queried concurrently on a node by default.
If there are more than five shards, the query will be performed in batches. In a
single shard, the query is performed by traversing each segment one by one.

Figure 3-5 Elasticsearch index composition

Improving Query Performance
In the Elasticsearch data query process, the following solutions can be used to
improve performance:

Table 3-2 Improving query performance

N
o.

Solution Description

1 Use
_routing to
reduce the
number of
shards
scanned
during
retrieval.

During data import, configure routing to route data to a
specific shard instead of all the shards of the related index,
improving the overall throughput of the cluster.
In Elasticsearch 7.x, run the following commands:
● Insert data based on a specified routing.

PUT /{index}/_doc/1?routing=user1
{
 "title": "This is a document"
}

● Query data based on a specified routing.
GET /{index}/_doc/1?routing=user1

Cloud Search Service
Best Practices 3 Cluster Performance Tuning

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 50

N
o.

Solution Description

2 Use index
sorting to
reduce the
number of
segments to
be scanned.

When a request is processed on a shard, the segments of
the shard are traversed one by one. By using index sorting,
the range query or sorting query can be terminated in
advance (early-terminate).
For example, in Elasticsearch 7.x, run the following
commands:
// Assume the date field needs to be frequently used for range query.
PUT {index}
{
 "settings": {
 "index": {
 "sort.field": "date",
 "sort.order": "desc"
 }
 },
 "mappings": {
 "properties": {
 "date": {
 "type": "date"
 }
 }
 }
}

3 Add query
cache to
improve
cache hit.

When a filter request is executed in a segment, the bitset is
used to retain the result, which can be reused for later
similar queries, thus reducing the overall query workloads.
You can add query cache by increasing the value of
indices.queries.cache.size. For details, see . Restart the
cluster for the modification to take effect.

4 Perform
forcemerge
in advance
to reduce
the number
of segments
to be
scanned.

For read-only indexes that are periodically rolled, you can
periodically execute forcemerge to combine small segments
into large segments and permanently delete indexes
marked as deleted.
In Elasticsearch 7.x, a configuration example is as follows:
// Assume the number of segments after index forcemerge is set to 10.
POST /{index}/_forcemerge?max_num_segments=10

Cloud Search Service
Best Practices 3 Cluster Performance Tuning

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 51

4 Practices

4.1 Using CSS to Accelerate Database Query and
Analysis

Overview
Elasticsearch is used as a supplement to relational databases, such as MySQL and
GaussDB(for MySQL), to improve the full-text search and high-concurrency ad hoc
query capabilities of the databases.

This chapter describes how to synchronize data from a MySQL database to CSS to
accelerate full-text search and ad hoc query and analysis. The following figure
shows the solution process.

Figure 4-1 Using CSS to accelerate database query and analysis

1. Service data is stored in the MySQL database.
2. DRS synchronizes data from MySQL to CSS in real time.
3. CSS is used for full-text search and data query and analysis.

Prerequisites
● A CSS cluster and a MySQL database in security mode have been created, and

they are in the same VPC and security group.
● Data to be synchronized exists in the MySQL database. This section uses the

following table structure and initial data as an example.

a. Create a student information table in MySQL.
CREATE TABLE `student` (
 `dsc` varchar(100) COLLATE utf8mb4_general_ci DEFAULT NULL,
 `age` smallint unsigned DEFAULT NULL,
 `name` varchar(32) COLLATE utf8mb4_general_ci NOT NULL,
 `id` int unsigned NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 52

b. Insert the initial data of three students into the MySQL database.
INSERT INTO student (id,name,age,dsc)
VALUES
('1','Jack Ma Yun','50','Jack Ma Yun is a Chinese business magnate, investor and philanthropist.'),
('2','will smith','22','also known by his stage name the Fresh Prince, is an American actor, rapper,
and producer.'),
('3','James Francis Cameron','68','the director of avatar');

● Indexes have been created in the CSS cluster and match the table indexes in
the MySQL database.
The following is an example of the indexes in the cluster in this chapter:
PUT student
{
 "settings": {
 "number_of_replicas": 0,
 "number_of_shards": 3
 },
 "mappings": {
 "properties": {
 "id": {
 "type": "keyword"
 },
 "name": {
 "type": "short"
 },
 "age": {
 "type": "short"
 },
 "desc": {
 "type": "text"
 }
 }
 }
}

Configure number_of_shards and number_of_replicas as needed.

Procedure

Step 1 Use DRS to synchronize MySQL data to CSS in real time. For details, see .

In this example, configure the parameters by following the suggestions in Table
4-1.

Table 4-1 Synchronization parameters

Module Parameter Suggestion

Create
Synchronization
Instance >
Synchronize
Instance Details

Network Type Select VPC.

Source DB
Instance

Select the RDS for MySQL instance to
be synchronized, that is, the MySQL
database that stores service data.

Synchronization
Instance Subnet

Select the subnet where the
synchronization instance is located.
You are advised to select the subnet
where the database instance and the
CSS cluster are located.

Configure Source
and Destination

VPC and Subnet Select the VPC and subnet of the CSS
cluster.

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 53

Module Parameter Suggestion

Databases >
Destination
Database

IP Address or
Domain Name

Enter the IP address of the CSS cluster.
For details, see Obtaining the IP
address of a CSS cluster.

Database
Username and
Database
Password

Enter the administrator username
(admin) and password of the CSS
cluster.

Encryption
Certificate

Select the security certificate of the
CSS cluster. If SSL Connection is not
enabled, you do not need to select any
certificate. For details, see Obtaining
the security certificate of a CSS
cluster.

Set
Synchronization
Task

Flow Control Select No.

Synchronization
Object Type

Deselect Table structure, because the
indexes matching MySQL tables have
been created in the CSS cluster.

Synchronization
Object

Select Tables. Select the database and
table name corresponding to CSS.
NOTE

Ensure the type name in the configuration
item is the same as the index name, that
is, _doc.

Process Data - Click Next.

After the synchronization task is started, wait until the Status of the task changes
from Full synchronization to Incremental, indicating real-time synchronization
has started.

Step 2 Check the synchronization status of the database.

1. Verify full data synchronization.
Run the following command in Kibana of CSS to check whether full data has
been synchronized to CSS:
GET student/_search

2. Insert new data in the source cluster and check whether the data is
synchronized to CSS.
For example, insert a record whose id is 4 in the source cluster.
INSERT INTO student (id,name,age,dsc)
VALUES
('4','Bill Gates','50','Gates III is an American business magnate, software developer, investor, author,
and philanthropist.')

Run the following command in Kibana of CSS to check whether new data is
synchronized to CSS:
GET student/_search

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 54

3. Update data in the source cluster and check whether the data is synchronized
to CSS.
For example, in the record whose id is 4, change the value of age from 50 to
55.
UPDATE student set age='55' WHERE id=4;

Run the following command in Kibana of CSS to check whether the data is
updated in CSS:
GET student/_search

4. Delete data from the source cluster and check whether the data is deleted
synchronously from CSS.
For example, delete the record whose id is 4.
DELETE FROM student WHERE id=4;

Run the following command in Kibana of CSS to check whether the data is
deleted synchronously from CSS:
GET student/_search

Step 3 Verify the full-text search capability of the database.

For example, run the following command to query the data that contains avatar
in dsc in CSS:

GET student/_search
{
 "query": {
 "match": {
 "dsc": "avatar"
 }
 }
}

Step 4 Verify the ad hoc query capability of the database.

For example, query philanthropist whose age is greater than 40 in CSS.

GET student/_search
{
 "query": {
 "bool": {
 "must": [
 {
 "match": {
 "dsc": "philanthropist"
 }
 },
 {
 "range": {
 "age": {
 "gte": 40
 }
 }
 }
]
 }
 }
}

Step 5 Verify the statistical analysis capability of the database.

For example, use CSS to collect statistics on the age distributions of all users.

GET student/_search
{
 "size": 0,

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 55

 "query": {
 "match_all": {}
 },
 "aggs": {
 "age_count": {
 "terms": {
 "field": "age",
 "size": 10
 }
 }
 }
}

----End

Other Operations
● Obtaining the IP address of a CSS cluster

a. In the navigation pane on the left, choose Clusters.

b. In the cluster list, locate a cluster, and obtain the IP address of the CSS
cluster from the Private Network Address column. Generally, the IP
address format is <host>:<port> or <host>:<port>,<host>:<port>.

If the cluster has only one node, the IP address and port number of only
one node are displayed, for example, 10.62.179.32:9200. If the cluster
has multiple nodes, the IP addresses and port numbers of all nodes are
displayed, for example, 10.62.179.32:9200,10.62.179.33:9200.

● Obtaining the security certificate of a CSS cluster

a. Log in to the CSS management console.

b. In the navigation pane, choose Clusters. The cluster list is displayed.

c. Click the name of a cluster to go to the cluster details page.

d. On the Configuration page, click Download Certificate next to HTTPS
Access.

4.2 Using CSS to Build a Unified Log Management
Platform

A unified log management platform built using CSS can manage logs in real time
in a unified and convenient manner, enabling log-driven O&M and improving
service management efficiency.

Overview

Elasticsearch, Logstash, Kibana, and Beats (ELKB) provides a complete set of log
solutions and is a mainstream log system. The following figure shows its
framework.

Figure 4-2 Unified log management platform framework

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 56

● Beats is a lightweight log collector, comprising Filebeat and Metricbeat.
● Logstash collects and preprocesses logs. It supports multiple data sources and

ETL processing modes.
● Elasticsearch is an open-source distributed search engine that collects,

analyzes, and stores data. CSS allows you to create Elasticsearch clusters.
● Kibana is a visualization tool used to perform web-based visualized query and

make BI reports.

This section describes how to use CSS, Filebeat, Logstash, and Kibana to build a
unified log management platform. Filebeat collects ECS logs and sends the logs to
Logstash for data processing. The processing results are stored in CSS, and can be
queried, analyzed, and visualized using Kibana.

For details about the version compatibility of ELKB components, see https://
www.elastic.co/support/matrix#matrix_compatibility.

Prerequisites
● A CSS cluster in non-security mode has been created.
● You have applied for an ECS and installed the Java environment on it.

Procedure

Step 1 Deploy and configure Filebeat.

1. Download Filebeat. The recommended version is 7.6.2. Download it at
https://www.elastic.co/downloads/past-releases#filebeat-oss.

2. Configure the Filebeat configuration file filebeat.yml.
For example, to collect all the files whose names end with log in the /root/
directory, configure the filebeat.yml file is as follows:
filebeat.inputs:
- type: log
 enabled: true
 # Path of the collected log file
 paths:
 - /root/*.log

filebeat.config.modules:
 path: ${path.config}/modules.d/*.yml
 reload.enabled: false
Logstash hosts information
output.logstash:
 hosts: ["192.168.0.126:5044"]

processors:

Step 2 Deploy and configure Logstash.

NO TE

To achieve better performance, you are advised to set the JVM parameter in Logstash to
half of the ECS or docker memory.

1. Download Logstash. The recommended version is 7.6.2. Download it at
https://www.elastic.co/downloads/past-releases#logstash-oss.

2. Ensure that Logstash can communicate with the CSS cluster.
3. Configure the Logstash configuration file logstash-sample.conf.

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 57

https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/downloads/past-releases#filebeat-oss
https://www.elastic.co/downloads/past-releases#logstash-oss

The content of the logstash-sample.conf file is as follows:
input {
 beats {
 port => 5044
 }
}
Split data.
filter {
 grok {
 match => {
 "message" => '\[%{GREEDYDATA:timemaybe}\] \[%{WORD:level}\] %{GREEDYDATA:content}'
 }
 }
 mutate {
 remove_field => ["@version","tags","source","input","prospector","beat"]
 }
}
CSS cluster information
output {
 elasticsearch {
 hosts => ["http://192.168.0.4:9200"]
 index => "%{[@metadata][beat]}-%{+YYYY.MM.dd}"
 #user => "xxx"
 #password => "xxx"
 }
}

NO TE

You can use Grok Debugger (http://grokdebug.herokuapp.com/) to configure the
filter mode of Logstash.

Step 3 Configure the index template of the CSS cluster on Kibana or via API.

For example, create an index template. Let the index use three shards and no
replicas. Fields such as @timestamp, content, host.name, level, log.file.path,
message and timemaybe are defined in the index.

PUT _template/filebeat
{
 "index_patterns": ["filebeat*"],
 "settings": {
 # Define the number of shards.
 "number_of_shards": 3,
 # Define the number of copies.
 "number_of_replicas": 0,
 "refresh_interval": "5s"
 },
 # Define a field.
 "mappings": {
 "properties": {
 "@timestamp": {
 "type": "date"
 },
 "content": {
 "type": "text"
 },
 "host": {
 "properties": {
 "name": {
 "type": "text"
 }
 }
 },
 "level": {
 "type": "keyword"
 },
 "log": {

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 58

http://grokdebug.herokuapp.com/

 "properties": {
 "file": {
 "properties": {
 "path": {
 "type": "text"
 }
 }
 }
 }
 },
 "message": {
 "type": "text"
 },
 "timemaybe": {
 "type": "date",
 "format": "yyyy-MM-dd HH:mm:ss||epoch_millis"
 }
 }
 }
}

Step 4 Prepare test data on ECS.

Run the following command to generate test data and write the data to /root/
tmp.log:

bash -c 'while true; do echo [$(date)] [info] this is the test message; sleep 1; done;' >> /root/tmp.log &

The following is an example of the generated test data:

[Thu Feb 13 14:01:16 CST 2020] [info] this is the test message

Step 5 Run the following command to start Logstash:
nohup ./bin/logstash -f /opt/pht/logstash-6.8.6/logstash-sample.conf &

Step 6 Run the following command to start Filebeat:
./filebeat

Step 7 Use Kibana to query data and create reports.

1. Go to the Kibana page of the CSS cluster.

2. Click Discover and perform query and analysis, as shown in the following
figure.

Figure 4-3 Discover page

----End

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 59

4.3 Configuring Query Scoring in an Elasticsearch
Cluster

You can score matched documents in an Elasticsearch cluster. This section
describes how to configure query scoring.

Overview
You can score a query in either of the following ways:

● Calculate the final scores (new_score) of query results based on vote and
sort the results in descending order.
new_score = query_score x (vote x factor)
– query_score: calculated based on the total number of search keywords

found in a record. A record earns 1 point for each keyword it contains.
– vote: vote of a record.
– factor : user-defined weight of vote.

● Calculate the final scores (new_score) of query results based on inline and
sort the results in descending order.
new_score = query_score x inline
– query_score: calculated based on the total number of search keywords

found in a record. A record earns 1 point for each keyword it contains.
– vote: vote of a record.
– inline: Configure two value options for this parameter and a threshold

for vote. One option is used if vote exceeds the threshold, and the other
is used if vote is smaller than or equal to the threshold. In this way, the
query accuracy will not be affected by abnormal vote values.

Prerequisites
An Elasticsearch cluster has been created on the CSS management console and is
available.

Procedure
NO TE

The code examples in this section can only be used for clusters Elasticsearch 7.x or later.

1. Log in to the CSS management console.
2. In the navigation pane on the left, click Clusters to go to the Elasticsearch

cluster list.
3. Click Access Kibana in the Operation column of a cluster.
4. In the navigation tree on the left of Kibana, choose Dev Tools. The command

execution page is displayed.
5. Create an index and specify a custom mapping to define the data type.

For example, the content of the tv.json file is as follows:

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 60

{
"tv":[
{ "name": "tv1", "description": "USB, DisplayPort", "vote": 0.98 }
{ "name": "tv2", "description": "USB, HDMI", "vote": 0.99 }
{ "name": "tv3", "description": "USB", "vote": 0.5 }
{ "name": "tv4", "description": "USB, HDMI, DisplayPort", "vote": 0.7 }
]
}

Run the following command to create the mall index and specify the user-
defined mapping to define the data type:
PUT /mall?pretty
{
 "mappings": {
 "properties": {
 "name": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword"
 }
 }
 },
 "description": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword"
 }
 }
 },
 "vote": {
 "type": "float"
 }
 }
 }
}

6. Import data.
Run the following command to import data in the tv.json file to the mall
index:
POST /mall/_bulk?pretty
{ "index": {"_id": "1"}}
{ "name": "tv1", "description": "USB, DisplayPort", "vote": 0.98 }
{ "index": {"_id": "2"}}
{ "name": "tv2", "description": "USB, HDMI", "vote": 0.99 }
{ "index": {"_id": "3"}}
{ "name": "tv3", "description": "USB", "vote": 0.5 }
{ "index": {"_id": "4"}}
{ "name": "tv4", "description": "USB, HDMI, DisplayPort", "vote": 0.7 }

7. Query data by using custom scoring. The query results can be scored based on
vote or inline.
Assume a user wants to query TVs with USB, HDMI, and/or DisplayPort ports.
The final query score can be calculated in the following ways and used for
sorting:
– Scoring based on vote

The score is calculated using the formula new_score = query_score x
(vote x factor). Run the following command:
GET /mall/_doc/_search?pretty
{
 "query":{
 "function_score":{
 "query":{
 "bool":{

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 61

 "should":[
 {"match": {"description": "USB"}},
 {"match": {"description": "HDMI"}},
 {"match": {"description": "DisplayPort"}}
]
 }
 },
 "field_value_factor":{
 "field":"vote",
 "factor":1
 },
 "boost_mode":"multiply",
 "max_boost":10
 }
 }
}

The query results are displayed in descending order of the score. The
command output is as follows:
{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 4,
 "relation" : "eq"
 },
 "max_score" : 0.8388366,
 "hits" : [
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "4",
 "_score" : 0.8388366,
 "_source" : {
 "name" : "tv4",
 "description" : "USB, HDMI, DisplayPort",
 "vote" : 0.7
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "2",
 "_score" : 0.7428025,
 "_source" : {
 "name" : "tv2",
 "description" : "USB, HDMI",
 "vote" : 0.99
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "1",
 "_score" : 0.7352994,
 "_source" : {
 "name" : "tv1",
 "description" : "USB, DisplayPort",
 "vote" : 0.98
 }
 },
 {
 "_index" : "mall",

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 62

 "_type" : "_doc",
 "_id" : "3",
 "_score" : 0.03592815,
 "_source" : {
 "name" : "tv3",
 "description" : "USB",
 "vote" : 0.5
 }
 }
]
 }
}

– Scoring based on inline
The score is calculated using the formula new_score = query_score x
inline. In this example, if vote > 0.8, the value of inline is 1. If vote ≤ 0.8,
the value of inline is 0.5. Run the following command:
GET /mall/_doc/_search?pretty
{
 "query":{
 "function_score":{
 "query":{
 "bool":{
 "should":[
 {"match":{"description":"USB"}},
 {"match":{"description":"HDMI"}},
 {"match":{"description":"DisplayPort"}}
]
 }
 },
 "script_score": {
 "script": {
 "params": {
 "threshold": 0.8
 },
 "inline": "if (doc[\"vote\"].value > params.threshold) {return 1;} return 0.5;"
 }
 },
 "boost_mode":"multiply",
 "max_boost":10
 }
 }
}

The query results are displayed in descending order of the score. The
command output is as follows:
{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 4,
 "relation" : "eq"
 },
 "max_score" : 0.75030553,
 "hits" : [
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "1",
 "_score" : 0.75030553,
 "_source" : {

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 63

 "name" : "tv1",
 "description" : "USB, DisplayPort",
 "vote" : 0.98
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "2",
 "_score" : 0.75030553,
 "_source" : {
 "name" : "tv2",
 "description" : "USB, HDMI",
 "vote" : 0.99
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "4",
 "_score" : 0.599169,
 "_source" : {
 "name" : "tv4",
 "description" : "USB, HDMI, DisplayPort",
 "vote" : 0.7
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "3",
 "_score" : 0.03592815,
 "_source" : {
 "name" : "tv3",
 "description" : "USB",
 "vote" : 0.5
 }
 }
]
 }
}

Cloud Search Service
Best Practices 4 Practices

Issue 01 (2023-03-29) Copyright © Huawei Technologies Co., Ltd. 64

	Contents
	1 Cluster Migration
	1.1 Migration Solution Overview
	1.2 Migration from Elasticsearch
	1.2.1 Migrating Cluster Data Using Logstash
	1.2.2 Migrating Cluster Data Through Backup and Restoration

	1.3 Migration from Kafka/MQ
	1.4 Migration from a Database

	2 Cluster Access
	2.1 Overview
	2.2 Accessing a Cluster Using cURL Commands
	2.3 Accessing a Cluster Using Java
	2.3.1 Accessing a Cluster Through the Rest High Level Client
	2.3.2 Accessing a Cluster Through the Rest Low Level Client
	2.3.3 Accessing the Cluster Through the Transport Client

	2.4 Accessing a Cluster Using Python
	2.5 Using ES-Hadoop to Read and Write Data in Elasticsearch Through Hive

	3 Cluster Performance Tuning
	3.1 Optimizing Write Performance
	3.2 Optimizing Query Performance

	4 Practices
	4.1 Using CSS to Accelerate Database Query and Analysis
	4.2 Using CSS to Build a Unified Log Management Platform
	4.3 Configuring Query Scoring in an Elasticsearch Cluster

